Mechanistic simulation

Palaeo fire modeling

This is a spatio-temporal simulation of the effect of fire regimes on the population dynamics of five forest species during the Lateglacial-Holocene transition (15-7 cal Kyr BP) at El Portalet, a subalpine bog located in the central Pyrenees region (1802m asl, Spain)

Range-shift simulation

Agent-based model coded with Netlogo to simulate range shift of *Quercus pyrenaica* populations in Sierra Nevada (Spain) using a realistic dispersal model with different levels of complexity.

R package "vitualPollen"

R package to simulate pollen production of mono-specific tree populations over millennia.

Forecasting plant range collapse in a mediterranean hotspot: when dispersal uncertainties matter

The Mediterranean Basin is threatened by climate change, and there is an urgent need for studies to determine the risk of plant range shift and potential extinction. In this study, we simulate potential range shifts of 176 plant species to perform a detailed prognosis of critical range decline and extinction in a transformed mediterranean landscape. Particularly, we seek to answer two pivotal questions: (1) what are the general plant‐extinction patterns we should expect in mediterranean landscapes during the 21st century? and (2) does dispersal ability prevent extinction under climate change?.