The goals of this study are to provide a map of actual habitat suitability (1), describe the relationships between abiotic predictors and the saguaro distribution at regional extents (2), and describe the potential effect of climate change on the spatial distribution of the saguaro (3).
Paleoecology provides a valuable perspective on coarse‐filter strategies by marshaling the natural experiments of the past to contextualize extinction risk due to the emerging impacts of climate change and anthropogenic threats. We reviewed examples from the paleoecological record that highlight the strengths, opportunities, and caveats of a CNS approach. We focused on the near‐time geological past of the Quaternary, during which species were subjected to widespread changes in climate and concomitant changes in the physical environment in general.
Many of the best practices concerning the development of ecological models or analytic techniques published in the scientific literature are not fully available to modelers but rather are stored in scientists' digital or biological memories. We propose that it is time to address the problem of storing, documenting, and executing ecological models and analytical procedures. In this paper, we propose a conceptual framework to design and implement a web application that will help to meet this challenge. This tool will foster cooperation among scientists, enhancing the creation of relevant knowledge that could be transferred to environmental managers. We have implemented this conceptual framework in a tool called ModeleR. This is being used to document, share, and execute more than 200 models and analytical processes associated with a global change monitoring program that is being undertaken in the Sierra Nevada Mountains (south Spain). ModeleR uses the concept of scientific workflow to connect and execute different types of models and analytical processes. Finally, we have envisioned the creation of a federation of model repositories where models documented within a local repository could be linked and even executed by other researchers.
Climate change research is an interdisciplinary field, and understanding its social, political, and environmental implications requires integration across fields of research where different tools may be used to address common concerns. One of the many advantages of interdisciplinary approaches is that they open communication between complementary fields, filling knowledge gaps and facilitating progression within both individual fields and the broader field of climate change research.
According to the simulations, the suitable habitat for the key species inhabiting the summit area, where most of the endemic and/or rare species are located, may disappear before the middle of the century. The other key species considered show moderate to drastic suitable habitat loss depending on the considered scenario. Climate warming should provoke a strong substitution dynamics between species, increasing spatial competition between both of them. In this study, we introduce the application of differential suitability concept into the analysis of potential impact of climate change, forest management and environmental monitoring, and discuss the limitations and uncertainties of these simulations.